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VIBRATION-PROOF CONDUIT FASTENING

UDC 534.83 + 532.552A. M. Akhtyamov and G. F. Safina

It is shown that the problem of determining the type and parameters of conduit end fastening from the
eigenfrequency spectrum has a dual solution. A method of solving this problem is developed. Some
examples are given.
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Introduction. Conduits are important elements of the fuel systems of cars, tractors, ships, planes, etc.
Their vibrations often cause drumming, leading to discomfort for crew members and passengers. This is due to
the fact that the frequency spectra of conduit vibrations are sometimes in a range hazardous to human health.
To change the conduit vibration frequencies, it is not always reasonable to change the conduit length or attach
concentrated masses. Therefore, to produce comfort conditions for passengers, it is required to determine the types
of conduit fastening that provide the necessary (safe) range of conduit vibration frequencies. This refers not only
to the fundamental vibration mode but also overtones. This problem is related to issues of noise suppression [1–3],
acoustic diagnostics, [4–9] and the theory of inverse problems of mathematical physics [10, 11].

The goal of the present work was to determine the fastening parameters of a conduit filled with a fluid from
the eigenfrequencies of its flexural vibrations. The problems of diagnosing the fastening of strings, membranes,
and plates have been studied previously [12–19]. For conduits, however, the problem formulated here is apparently
considered for the first time. In addition, unlike in [12–19], in the present work, four rather than two boundary
conditions are sought, which significantly complicates the problem and requires the use of different methods for its
solution.

Problems of calculating the eigenfrequencies of flexural vibrations of conduits were investigated in [20, 21].
However, the inverse problem — determining the boundary conditions from eigenfrequencies — was not studied
in these papers. In addition, in [20, 21], only approximate methods (for example, the Galerkin and Rayleigh–Ritz
methods) were considered, which are unsuitable for the solution of the problem formulated.

1. Primal Problem. The small free vibrations of a conduit filled with a fluid (which is incompressible) is
described by the following equation [20] (see also [21, pp. 193–196]):

EI
∂4w

∂x4
+ (m + m̄)

∂2w

∂t2
+ m̄

p0

ρ0

∂2w

∂x2
= 0.

Here I = (π/4)(r4 − r4
1) is the moment of inertia of the conduit cross section, EI is the rigidity of the conduit cross

section, p0 is the critical internal pressure, m = π(r2 − r2
1)ρ and m̄ = πr2

1ρ0 are the masses of the conduit and fluid
per unit length l of the conduit, respectively, r and r1 are the outer and inner radii of the cross section, respectively,
ρ is the density of the conduit material, and ρ0 is the fluid density.

Introducing the dimensionless variables x̃ = x/l, w̃ = w/r, and t̃ = t/τ and representing the deflection in
the form w̃(x̃, t̃) = X(x̃) eiωt̃, we reduce the initial equation to the ordinary linear differential equation of fourth
order with constant coefficients

X(4) + aX ′′ − ω2X = 0, (1)

where a = m̄l2p0/(EIρ0).
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The linearly independent solutions of Eq. (1) are the functions Xj = Xj(x̃, ω) = eλj x̃ (j = 1, 2, 3, 4), where
λj = λj(ω) are the various roots of the corresponding characteristic equation.

To formulate the spectral problem of free vibrations of the conduit, it is also necessary to specify boundary
conditions. Since we consider the flexural vibrations of the conduit, the boundary conditions of the problem are
similar to the boundary conditions of the problem of the free flexural vibrations of a bar. Generally, considering
restraint, free support, free end, floating restraint, and various types of elastic restraint, the boundary conditions
have the following form [14, 22]:

U1(X) = a1X(0) + a4X
′′′(0) = 0, U2(X) = a2X

′(0) + a3X
′′(0) = 0; (2)

U3(X) = b1X(1) + b4X
′′′(1) = 0, U4(X) = b2X

′(1) + b3X
′′(1) = 0. (3)

The equation for the frequencies is obtained from the condition that the characteristic determinant is equal
to zero [22]:

Δ(ω) =
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∣
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∣

. (4)

Some approximate methods for calculating the roots of the characteristic determinant are described in [23].
2. Inverse Problem. The matrix composed of the coefficients aj of the forms U1(Xk) and U2(Xk) will be

denoted by A, and the matrix composed of the coefficients bj of the forms U3(Xk) and U4(Xk) by B:

A =

∥
∥
∥
∥
∥

a1 0 0 a4

0 a2 a3 0

∥
∥
∥
∥
∥

, B =

∥
∥
∥
∥
∥

b1 0 0 b4

0 b2 b3 0

∥
∥
∥
∥
∥

.

The second-order minors formed from the ith and jth columns of the matrices A and B will be denoted by Aij and
Bij , respectively.

We note that determining the boundary conditions does not mean finding all coefficients aj and bj since, for
example, the boundary conditions X(0) = 0 and X ′(0) = 0 are equivalent to X(0)−X ′(0) = 0 and X(0)+X ′(0) = 0
but their coefficients aj are different.

The present study seeks not only to exactly identify all coefficients aj and bj but also to determine the
boundary conditions, which is equivalent to finding the linear shells 〈a1, a2〉 and 〈b1, b2〉 constructed from the
vectors

a1 = (a1, 0, 0, a4)t, a2 = (0, a2, a3, 0)t, b1 = (b1, 0, 0, b4)t, b2 = (0, b2, b3, 0)t.

In terms of problem (1)–(3), the inverse problem of finding boundary conditions (2) and (3) can be formulated
as follows: the coefficients aj and bj of the form Ui(Xm) (i, j, m = 1, 2, 3, 4) of problem (1)–(3) are unknown. The
ranks of the matrices A and B composed of these coefficients are equal to two. The eigenvalues ωk of problem
(1)–(3) are unknown. It is required to find the linear shells 〈a1, a2〉 and 〈b1, b2〉.

3. Duality of the Solution of the Inverse Problem. To simplify the calculations, it is necessary to
introduce a new notation. We denote by C a matrix of dimension 4 × 8:

C =

∥
∥
∥
∥
∥

A 0

0 B

∥
∥
∥
∥
∥

. (5)

The elements of the matrix C will be denoted by cij , and the minors of the matrix C composed of columns with
the numbers k1, k2, k3, and k4, by Mk1k2k3k4 :

Mk1k2k3k4 =

∣
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c1k1 c1k2 c1k3 c1k4

c2k1 c2k2 c2k3 c2k4

c3k1 c3k2 c3k3 c3k4

c4k1 c4k2 c4k3 c4k4
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In the new notation, boundary conditions (2) and (3) can be written as

Ui(Xm) =
4∑

j=1

[

cijX
(j−1)
m (0) + ci,4+jX

(j−1)
m (1)

]

, i = 1, 2, 3, 4. (6)

In this notation, the inverse problem is formulated as follows: the coefficients cij of problem (1), (6) are
unknown; the rank of the matrix C composed of these coefficients is equal to four; the minors A14, A23, B14, and B23

of the matrices A and B constituting the matrix C are equal to zero; the eigenvalues ωk of problem (1), (6) are known.
It is required to find the linear shell 〈c1, c2, c3, c4〉 constructed from the vectors ci = (ci1, ci2, ci3, ci4, ci5, ci6, ci7, ci8)t

(i = 1, 2, 3, 4).
We note that finding the linear shell 〈c1, c2, c3, c4〉 is equivalent to finding the matrix C up to linear equiv-

alence [24].
Let us show that the inverse problem has one or two solutions. Along with forms (6), we consider the

following linear homogeneous forms:

Ũi(Xm) =
4∑

j=1

[

c̃ijX
(j−1)
m (0) + c̃i,4+jX

(j−1)
m (1)

]

, i = 1, 2, 3, 4. (7)

The matrix composed of the coefficients c̃ij will be denoted by C̃, its minors by M̃k1k2k3k4 , and the corre-
sponding second-order minors by Ãk1k2 and B̃k3−4,k4−4. We introduce the following vectors:

c+
i = (c̃i1, c̃i2, c̃i3, c̃i4, c̃i5, c̃i6, c̃i7, c̃i8)t,

c−i = (c̃i5, c̃i6,−c̃i7,−c̃i8, c̃i1, c̃i2,−c̃i3,−c̃i4)t, i = 1, 2, 3, 4.

Theorem 1 (on the duality of the solution of the inverse problem). Let rankC = rank C̃ = 4. If the eigen-
values {ωk} of problem (1), (6) and the eigenvalues {ω̃k} of problem (1), (7) coincide in view of their multiplicities,
then 〈c1, c2, c3, c4〉 = 〈c+

1 , c+
2 , c+

3 , c+
4 〉 or 〈c1, c2, c3, c4〉 = 〈c−1 , c−2 , c−3 , c−4 〉.

Proof. We note that the determinant (4) can be written as

Δ(ωk) = det(CD),

where

D =

∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥

X1(0) X2(0) X3(0) X4(0)

X ′
1(0) X ′

2(0) X ′
3(0) X ′

4(0)

X ′′
1 (0) X ′′

2 (0) X ′′
3 (0) X ′′

4 (0)

X ′′′
1 (0) X ′′′

2 (0) X ′′′
3 (0) X ′′′

4 (0)

X1(1) X2(1) X3(1) X4(1)

X ′
1(1) X ′

2(1) X ′
3(1) X ′

4(1)

X ′′
1 (1) X ′′

2 (1) X ′′
3 (1) X ′′

4 (1)

X ′′′
1 (1) X ′′′

2 (1) X ′′′
3 (1) X ′′′

4 (1)

∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥

.

Using the Binet–Cauchy formula [25], we obtain

Δ(ωk) =
∑

1≤k1<k2<...<k8≤8

Mk1k2k3k4fk1k2k3k4 , (8)

where fk1k2k3k4 are the fourth-order minors of the matrix D composed of the rows with the numbers k1, k2, k3,
and k4.

Since Mk1k2k3k4 = 0 for k3, k4 ≤ 4, k1, k2 ≥ 5, then, using the Laplace theorem to calculate the determinant
and taking into account that Δ(ωk) = 0, we obtain

∑

1≤k1<k2≤4

5≤k3<k4≤8

Mk1k2k3k4fk1k2k3k4(ωk) = 0, (9)

where

Mk1k2k3k4 = Ak1,k2 Bk3−4,k4−4 (A14 = A23 = B14 = B23 = 0). (10)
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From the general theory of linear differential operators, it follows that the function Δ(ω) is an integer function
of order 1/2 (see [26]). From this it follows that the characteristic determinants Δ(ω) and Δ̃(ω) of problems (1),
(6) and (1), (7) are linked by the relation

Δ(ω) ≡ KΔ̃(ω), (11)

where K is a certain nonzero constant.
From (8) and (11), we obtain

[M1256 − KM̃1256]f1256 + [M1257 − KM̃1257]f1257

+ [M1268 − KM̃1268]f1268 + [M1278 − KM̃1278]f1278

+ [M1356 − KM̃1356]f1356 + [M1357 − KM̃1357]f1357

+ [M1368 − KM̃1368]f1368 + [M1378 − KM̃1378]f1378

+ [M2456 − KM̃2456]f2456 + [M2457 − KM̃2457]f2457

+ [M2468 − KM̃2468]f2468 + [M2478 − KM̃2478]f2478

+ [M3456 − KM̃3456]f3456 + [M3457 − KM̃3457]f3457

+ [M3468 − KM̃3468]f3468 + [M3478 − KM̃3457]f3478 ≡ 0. (12)

It is easy to show the following: 1) f1356 = −f1257, f1257 = −f1356, f1268 = −f2456, f1278 = f3456, f1368 =
f2457, f1378 = −f3457, and f2478 = −f3468; 2) the functions f1256(ωm), f1257(ωm), f1268(ω), f1278(ω), f1357(ω),
f1368(ω), f1378(ω), f2468(ω), f2478(ω), and f3478(ω) form a linearly independent system of functions. This implies
the duality of the solution of the inverse problem. Indeed, the linear independence of the corresponding functions
leads to the equalities

M1256 = KM̃1256; (13)

M1357 = KM̃1357; (14)

M2468 = KM̃2468; (15)

M3478 = KM̃3478; (16)

M1257 − M1356 = K(M̃1356 − M̃1257); (17)

M1268 − M2456 = K(M̃1268 − M̃2456); (18)

M1378 − M3457 = K(M̃1378 − M̃3457); (19)

M2478 − M3468 = K(M̃2478 − M̃3468); (20)

M1278 + M3456 = K(M̃1278 + M̃3456); (21)

M1368 + M2457 = K(M̃1368 + M̃2457). (22)

To prove the aforesaid, we consider five cases: 1) M1256 �= 0; 2) M1357 �= 0; 3) M2468 �= 0; 4) M3478 �= 0;
5) M1256 = M1357 = M2468 = M3478 = 0. Without loss of generality, we assume that M1256 = KM̃1256 �= 0 (the
first case occurs).

From the equalities M1256 = A12B12 = a1a2b1b2 and M̃1256 = Ã12B̃12 = ã1ã2b̃1b̃2, it follows that the
elements a1, a2, b1, b2, ã1, ã2, b̃1, and b̃2 of the matrix C are different from zero.

We divide the 1st, 2nd, 3rd, and 4th rows of the matrix C by a1, a2, b1, b2, respectively, and the 1st, 2nd,
3rd, and 4th rows of the matrix C̃ by ã1, ã2, b̃1, b̃2, respectively. As a result of these transformations, the matrices
C and C̃, up to linear equivalence, become
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C =

∥
∥
∥
∥
∥
∥
∥
∥
∥

1 0 0 a4 0 0 0 0

0 1 a3 0 0 0 0 0

0 0 0 0 1 0 0 b4

0 0 0 0 0 1 b3 0

∥
∥
∥
∥
∥
∥
∥
∥
∥

, C̃ =

∥
∥
∥
∥
∥
∥
∥
∥
∥
∥

1 0 0 ã4 0 0 0 0

0 1 ã3 0 0 0 0 0

0 0 0 0 1 0 0 b̃4

0 0 0 0 0 1 b̃3 0

∥
∥
∥
∥
∥
∥
∥
∥
∥
∥

.

From this representation of the matrices C and C̃ and equality (13), it follows that K = 1.
Relations (14) and (17) imply that a3b3 = ã3b̃3 and b3 − a3 = b̃3 − ã3, whence, according to the Vieta

theorem, we obtain the following alternative:

a3 = ã3, b3 = b̃3 or a3 = −b̃3, b3 = −ã3.

Similarly, from (15) and (18) it follows that

a4 = ã4, b4 = b̃4 or a4 = −b̃4, b4 = −ã4.

Thus, the first case M1256 = KM̃1256 �= 0 is split into four cases:
1) a3 = ã3, b3 = b̃3, a4 = ã4, and b4 = b̃4;
2) a3 = −b̃3, b3 = −ã3, a4 = −b̃4, and b4 = −ã4;
3) a3 = −b̃3, b3 = −ã3, a4 = ã4, and b4 = b̃4;
4) a3 = ã3, b3 = b̃3, a4 = −b̃4, and b4 = −ã4.
Actually, however, two rather than four cases occur (cases 3 and 4 are particular cases of 1 and 2). Indeed,

let case 3 occurs. Then, relations (21) or (22) leads to the equality

(a3 + b3)(a4 + b4) = 0. (23)

From this we obtain a3 + b3 = 0 or a4 + b4 = 0. For a3 + b3 = 0, case 3 reduces to case 1 since −b̃3 = a3 = −b3 = ã3

and, hence, b̃3 = b3, ã3 = a3. For a4 + b4 = 0, case 3 reduces to case 2 since ã4 = a4 = −b4 = −b̃4 and, hence,
b̃4 = −a4, ã4 = −b4. In contrast to (21) or (22), the remaining equalities (13)–(20) do not give new constraints.
Thus, in case 3, case 1 or case 2 occur. In case 4, as in case 3, relation (21) or (22) leads to equality (23). For
a3 + b3 = 0, case 4 reduces to case 2, and for a4 + b4 = 0, case 4 reduces to case 1. As a result, we obtain
〈c1, c2, c3, c4〉 = 〈c+

1 , c+
2 , c+

3 , c+
4 〉 or 〈c1, c2, c3, c4〉 = 〈c−1 , c−2 , c−3 , c−4 〉.

Thus, the solution of the inverse problem is dual. The theorem is proved.
We note that, for 〈c+

1 , c+
2 , c+

3 , c+
4 〉 = 〈c−1 , c−2 , c−3 , c−4 〉, the two solutions (multiple solutions) coincide. This

case occurs, for example, for the restraint–restraint fastening.
Thus, the problem of seeking the unknown boundary conditions from the eigenfrequencies of conduit flexural

vibrations has two solutions. These solutions can be constructed using two methods based on the representation of
the characteristic determinant in the form of the infinite product [14]:

Δ(ω) ≡ K
∞∏

k=1

(

1 − ω

ωk

)

.

These methods, however, proved ineffective because of the significant accumulation of errors in calculations
of the corresponding infinite product. Therefore, in the present work, we used a different method based on solving
a system of linear algebraic equations.

4. Method of Seeking the Boundary Conditions. Let ωk be nine eigenfrequencies from the entire
spectrum of problem (1), (6). Then, the equality Δ(ωk) = 0 form a system of nine linear algebraic equations for
ten unknowns x1, x2, . . . , xn:

Δ(ωk) = x1f1257(ωk) + x2f1268(ωk) + x3f1368(ωk) + x4f1278(ωk) + x5f1378(ωk)

+ x6f2478(ωk) + x7f1357(ωk) + x8f2468(ωk) + x9f1256(ωk) + x10f3478(ωk) = 0. (24)

Here

x1 = M1257 − M1356, x2 = M1268 − M2456, x3 = M1368 + M2457,

x4 = M1278 + M3456, x5 = M1378 − M3457, x6 = M2478 − M3468, (25)

x7 = M1357, x8 = M2468, x9 = M1256, x10 = M3478.
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If rank ‖fk1k2k3k4(ωk)‖ = 9 (this matrix has dimension 10 × 9), the system of linear algebraic equations
(24) has a unique (up to a constant factor) solution x1, x2, . . . , x10. The two required matrices C are found (up to
equivalence) from the values of x1, x2, . . . , x10. Some examples are given below.

Example 1. Free support–restraint. We consider the differential equation

X(4) + 2X ′′ − ω2X = 0. (26)

Let nine eigenfrequencies ωk problems (26), (2), (3) be known: ω1 = 14.65, ω2 = 49.10, ω3 = 103.34, ω4 = 177.34,
ω5 = 271.09, ω6 = 384.58, ω7 = 670.79, ω8 = 843.504, and ω9 = 1035.96. We find their corresponding boundary
conditions. Computer calculations yield the following solution of system (24): x1 = K, xi = 0, i = 2, 3, . . . , 10.
Here and below, K = const �= 0 (the data are given to two decimal places; real calculations were performed on a
computer with 40 decimal places).

From the equality x1 = M1257 − M1356 = K, it follows that M1257 �= 0 or M1356 �= 0 (otherwise, the ranks
of the matrices A and B are equal to zero, which contradicts the fact that their ranks are equal to two). We find
the matrices C that correspond to these cases.

1. Let M1257 �= 0. Then, a1 �= 0, a2 �= 0, b1 �= 0, and b3 �= 0. From this, we find that the matrix C (up to
linear equivalence) has the form

C =

∥
∥
∥
∥
∥
∥
∥
∥
∥

1 0 0 a4 0 0 0 0

0 1 a3 0 0 0 0 0

0 0 0 0 1 0 0 b4

0 0 0 0 0 b2 1 0

∥
∥
∥
∥
∥
∥
∥
∥
∥

.

From the equalities M1357 = 0 and M1256 = 0, we obtain a3 = 0 and b2 = 0, and from the equalities x3 =
M1368 + M2457 = 0 and x4 = M1278 + M3456 = 0, we have a4 = 0 and b4 = 0.

Hence, the matrix C has the form

C =

∥
∥
∥
∥
∥
∥
∥
∥
∥

1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 0 1 0

∥
∥
∥
∥
∥
∥
∥
∥
∥

.

2. Let M1356 �= 0. Then, using the same method as in the case M1257 �= 0, we obtain

C =

∥
∥
∥
∥
∥
∥
∥
∥
∥

1 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0

∥
∥
∥
∥
∥
∥
∥
∥
∥

.

Thus, according to the theorem, we obtain two solutions:
1) restraint–free support:

X(0) = 0, X ′(0) = 0, X(1) = 0, X ′′(1) = 0;

2) free support–restraint:

X(0) = 0, X ′′(0) = 0, X(1) = 0, X ′(1) = 0.

Example 2. Elastic fastening. As in example 1, we consider the differential equation (26). Let nine
eigenfrequencies ωk of problem (26), (2), (3) be known: ω1 = 21.67, ω2 = 60.87, ω3 = 120.06, ω4 = 198.98,
ω5 = 297.66, ω6 = 416.08, ω7 = 712.15, ω8 = 889.79, and ω9 = 1087.18. In this case, the rank of system (24) is
equal to nine, and the nonzero components of the solution are the following:

x5 = −3K, x7 = K, x10 = −2K. (27)

From the equality x7 = M1357 �= 0, we obtain a1 �= 0, a3 �= 0, b1 �= 0, and b3 �= 0, whence it follows that the matrix
C (up to linear equivalence) has the form
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C =

∥
∥
∥
∥
∥
∥
∥
∥
∥

1 0 0 a4 0 0 0 0

0 a2 1 0 0 0 0 0

0 0 0 0 1 0 0 b4

0 0 0 0 0 b2 1 0

∥
∥
∥
∥
∥
∥
∥
∥
∥

(K = 1).

From this and from (25) and (27), we have a2 = 0, b2 = 0, a4 − b4 = −3, and a4b4 = −2. Hence, a2 = 0, b2 = 0,
a4 = −1, and b4 = 2 or a2 = 0, b2 = 0, a4 = −2, and b4 = 1.

Thus, the matrix C (up to linear equivalence) has the form

C =

∥
∥
∥
∥
∥
∥
∥
∥

1 0 0 −1 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 0 1 0 0 2
0 0 0 0 0 0 1 0

∥
∥
∥
∥
∥
∥
∥
∥

or

C =

∥
∥
∥
∥
∥
∥
∥
∥

1 0 0 −2 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 0 1 0 0 1
0 0 0 0 0 0 1 0

∥
∥
∥
∥
∥
∥
∥
∥

.

As a result, we obtain the following boundary conditions:

X(0)− X ′′′(0) = 0, X ′′(0) = 0, X(1) + 2 X ′′′(1) = 0, X ′′(1) = 0

or

X(0) − 2 X ′′′(0) = 0, X ′′(0) = 0, X(1) + X ′′′(1) = 0, X ′′(1) = 0.

Conclusions. The study showed the duality of the solution of the problem of determining the type of conduit
end fastening from the eigenfrequency spectrum. A method for solving this problem from nine eigenfrequencies was
developed. Some examples were given.

The duality of the solution of the problem can be explained as follows. If fluid does not flow in a conduit,
its ends are equivalent, and the type of conduit end fastening is determined with accuracy up to rearrangement.
For example, if the left end of the conduit is fixed by a spring with relative flexural rigidity equal to unity, and the
right end is fixed by a spring with relative flexural rigidity equal to two, only a conduit whose left end is fixed by
a spring with relative flexural rigidity equal to two and whose right end is fixed by a spring with relative flexural
rigidity equal to unity has the same frequency spectrum.

The results obtained can be useful in choosing the type of fastening such that the conduit vibrations have the
required (safe) frequency spectrum. In addition, these results are applicable for acoustic diagnostics of the conduit
fastening (in this case, the devices measuring eigenfrequencies should have very high accuracy).

We thank M. A. Il’gamov and S. F. Urmancheev for useful discussions.
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